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SUMMARY

The artificial neural network (ANN) model proposed by Rumelhart, Hinton, and Williams is applied to

develop a functional approximation of material data in the form of hysteresis loops from a nickel-base super-

alloy, Hastelloy X. Several different ANN configurations are used to model hysteresis loops at different cycles
for this alloy. The ANN models were successful in reproducing the hysteresis loops used for its training. How-

ever, because of sharp bends at the two ends of hysteresis loops, a drift occurs at the corners of the loops where

loading changes to unloading and vice versa (the sharp bends occurred when the stress-strain curves were repro-
duced by adding stress increments to the preceding values of the stresses). Therefore, it is possible only to

reproduce half of the loading path. The generalization capability of the network was tested by using additional
data for two other hysteresis loops at different cycles. The results were in good agreement. Also, the use of

ANN led to a data compression ratio of approximately 22:1.

INTRODUCTION

The design of high-performance aircraft engines requires the development of new materials that can with-

stand extreme temperature and loading conditions. To fulfill this need, new materials are fabricated and exten-

sively tested to assess characteristics such as strength, fatigue/fracture behavior, high-temperature creep, and

relaxation response. The test results are used to develop constitutive equations (ref. 1) that can be employed to

perform structural analysis simulations of aircraft engine components (ref. 2).

In its original form, the material data from extensive testing provides general guidelines about the material
behavior. In a strict sense, these data are applicable only to the test conditions. Although some generalized

conclusions can be drawn, it is necessary to develop more general theories about the material behavior that can

reproduce the experimental behavior accurately; also, it is necessary to be able to make predictions about the
material behavior under conditions for which experimental data are not available. These necessities have led to

the development of different constitutive modeling theories ranging from the continuum models to the consider-
ation of the micromechanics of material behavior. Three such theories, discussed in reference 1, are complex

and require an understanding of the physics underlying the problems of material characterization.

The testing of materials for behavior under extreme conditions results in data files containing several

thousands of data points. A simplified approach is to develop a functional approximation of the available test

data using nonlinear regression analysis or a similar method. This approach has restricted applicability when

compared with that of the general constitutive theories. The approach will not allow a deeper understanding of
the material behavior but can be used effectively to calculate general material parameters such as Young's



modulus,tangentmodulus, and creep parameters for a stress analysis simulation package. In this approach, the

general pattern of the material behavior can be captured without dwelling too much on the reasons which cause
it.

As shown in reference 3, artificial neural networks (ANN) can be used to develop approximate functional

mappings similar to nonlinear regression analyses. The ANN training can be a time-consuming process; how-

ever, its main advantage lies in its compact representation of the functions that could be used for interpolation.

The training can also very easily accommodate the mapping of any number of independent variables to a given

set of dependent variables. Ken-Ichi Funahasi (ref. 4) proved mathematically that any continuous mapping can

be approximated by multilayer neural networks with at least one hidden layer. This work was further extended

by Homik et al. (ref. 5) to include other types of squashing functions used in simulating the ANN. They also

provided the mathematical proof (ref. 6) that these types of ANN are also capable of approximating arbitrary

functions, including their derivatives. Further refinement of this work can be found in reference 7. These mathe-

matical proofs provide a sound theoretical basis for using the multilayer feed-forward networks with a continu-

ous squashing function (such as the sigmoid) to create approximate compact functional mappings using a

backpropagation algorithm (ref. 8).

The ANN has been successfully utilized in solving certain classes of problems in computational structures

technology (CST). A comprehensive list of such applications can be found in an unpublished manuscript (L. Berke

and J. Alam, "Application of Artificial Neural Networks in Structures Technology (An Overview)," NASA Lewis
Research Center, Cleveland, Ohio, 1993). These applications illustrate the research community's considerable

interest in experimenting with the ANN approach to tackle the problems when a best-fit function is needed for

the available data. However, these applications do not establish guidelines for creating an appropriate network

configuration or for training the networks for any particular data to be represented in compact functional form.

OBJECTIVE AND SCOPE OF STUDY

The present study was conducted to experiment with using the ANN approach to develop approximate func-

tional representations as applied to material deformation behavior. This study utilizes the experimental hysteresis

loop data taken from a deformation study on a nickel-base superaUoy, HasteUoy X (Mike Castelli, July 1991,
Cleveland, Ohio, personal communication). One objective of the study was to choose different configurations of

the ANN for network training and assess the accuracy of the associative recall process utilized by the trained

networks with the data used for training. The testing of the generalization capability of the ANN, generally

known as functional interpolation, was also part of the study. A different data set of hysteresis loops not used

for ANN training was employed for this purpose. Another objective was to try to keep the ANN configuration

as small as possible and to evaluate the extent of data compression possible using the ANN methodology.

ANN CONFIGURATION AND MODELING

Standard configurations of feed-forward networks were utilized for this study. As shown in figure 1, they

include an input layer, an output layer, and a hidden layer. The computer program NETS (ref. 9) was used for

all the network training and the associative recall process. It has an implementation of backpropagation algo-
rithm, as described in reference 8; it was written at the NASA Lyndon B. Johnson Space Center (ref. 9). The

stresses and strains for the hysteresis loo.ps are dependent upon the loading and unloading of the test specimen.

Therefore, to distinguish between these two conditions, a similar procedure suggested in reference 10 was used

to decide the number of input and output processing units in a network. The number of processing units in the

hidden layer was established by first using an arbitrary selection based on prior experience with the ANN

modeling (ref. 3) and then by assessing the accuracy of the trained network model.



RESULTSAND DISCUSSION

ANN Training

Figures 2 and 3 are plots of five hysteresis loops for Hastelloy X obtained by experiments at the NASA
Lewis Research Center (Mike Castelli, July 1991, Cleveland, Ohio, personal communication). These data com-

prised stress and swain values for five hysteresis loops at progressively increasing numbers of fatigue cycles
obtained at a constant strain rate of 0.0001 s -1 and a temperature of 1100 °F. Two thousand five hundred values

of the stress and strain pairs are available (i.e., five hundred pairs per loop). The hysteresis loop for cycle 1 was

selected to assess the accuracy of the ANN results and to choose an appropriate network configuration. Table I

shows the configurations of different networks used in this study. A training data set containing 247 stress-strain

values was created by choosing approximately alternate values of stress-strain from the available 500 for the

entire hysteresis loop for cycle 1. The training data were normalized between 0.1 and 0.9 for all the ANN models.

For the case of five input processing units, the inputs are e l, o 1, g2, o2, and Ag 2 respectively, where Ag 2 is

defined by equation (1):

AgE = g3 -- g2 (1)

where g and 0 are strain and stress, respectively. The single output processing unit is Ao 2, given by

equation (2):

AO 2= O3_ O2 (2)

Figure 4 shows these relationships graphically and provides further explanation of the chosen path. Table I
also shows the number of iterations needed for training along with the maximum (max) and root-mean-square

(rms) errors obtained after training. With the exception of ANN model 5-6-1, all networks converged to a
chosen accuracy of 0.04 rms error. Most of the error was reduced in the first thousand iterations. Further train-

ing leads to a very slow reduction in error. The training data set was propagated through the network to obtain

the results for AO 2. Since they are in the finite-difference form, the previous stress value 0 2 was added to fred
the next value of the stress 0 3 on the path. In figure 5 the results from ANN models 5-5-1 and 5-7-1 are plotted

along with the original data. Both results are fairly accurate. However, the 5-7-1 ANN produced results closer to

the original data. From these plots it can be concluded that the 5-7-1 network produced the best results among
all the models considered herein. Another advantage shown by these plots is the compactness of the ANN

model: only seven hidden processing units are employed for the hidden layer. This leads to a significant data

reduction because only a small file containing 42 weight values and 7 bias values is saved for the network recall

process. All the essential characteristics of the original hysteresis loop are captured in this small file. A quick
calculation shows that, if a floating point number is stored using 4 bytes, then the file containing weights and

biases will require 196 bytes. A file which stores all the data points for the hysteresis loop requires 2000 bytes,

leading to a data compression ratio of 10.2:1. A 2-byte integer representation was used to store the experimental

results.

Table II shows the neural network configurations used to develop an approximate functional representation

for the three hysteresis loops shown in figure 2. The nomenclature to specify the network is the same as that

used in table I except that one more input processing unit is added at the beginning to include the cycle number

n of the hysteresis loop. Thus, the number of input processing units is increased from five to six. The output

processing unit is the same AO2 as used before. The 743 stress-strain values in the training data set were chosen
from 1500 values available from the three hysteresis loops; the selection was made by choosing approximately

alternate stress-strain pairs. Table II also includes the number of iterations used for training and the maximum
and rms errors. In this table the 6-15-1 ANN model failed to converge; the 6-7-2-1 network used a very high



numberof iterations to converge (it was the only network model which used two hidden layers). In monitoring

the errors during the training process, it was observed that most of the error reduction was achieved in the first

100 iterations used for training the ANN model. Further training led to a very slow reduction in the errors;

however, it was needed to achieve the desired accuracy.

ANN Recall

The training data set was used for the ANN associative recall. The predicted results from the network models

were computed from the same scheme used earlier for the single hysteresis loop. These results for cycles 1,100,

and 5000 from the ANN models listed in table II along with the original data are plotted in figures 6, 7, and 8,

respectively. For cycle 1, the results from the 6-7-2-1 net are in close agreement with the original data. The
other two networks are close at the start of the propagation; however, a drift occurs from the original data as

one proceeds along the loop. This drift becomes significant at the ends because of the cumulative nature of the

error in retracing the original loading path. These types of problems require a higher accuracy compared with

other problems where the functional approximation is restricted to only one point at a time. A similar trend can

be observed from figures 7 and 8 for the hysteresis loops for cycles 100 and 5000, respectively. Overall, it can

be concluded that for aU the cycles the predicted results from the 6-7-2-1 network are within the allowable engi-

neering accuracy of the 20 percent desired from the functional approximation. In the case of this ANN model, a

file containing 58 weight values and 9 biases is stored and requires 268 bytes, assuming that 4 bytes are needed

to represent a floating point number. A 2-byte integer representation was used to store the experimental data;
hence, to store all the hysteresis loops in a file will require 6000 bytes, leading to a data compression ratio of
22.4:1 when the ANN model is used.

Interpolated Prediction

To test the generalization capability of the trained ANN model, the data for additional hysteresis loops for

intermediate cycles 10 and 1000 (shown in fig. 4) are used. For each cycle, 500 pairs of stress and strain data

were available. Of these, 166 pairs were used for each cycle, and data were presented to ANN model 6-7-2-1 for

n, el, °l, e2, 02, and Ae 2, respectively. The output from the ANN model is At 2, which is used to obtain (3 3

from the following equation:

O3 = o 2 + At 2 (3)

This procedure provides the value for the new pair e 3, o 3 and is repeated for the 166 points for both of the
hysteresis loops. The results are plotted in figures 9 and 10, respectively. For both the hysteresis loops, the

results are in close agreement with the original experimental data, which illustrates that the ANN model can be

used for functionally interpolating the data for which it was not trained. Also possible is finding results at inter-

mediate values by using the generalization capability of the ANN model.

CONCLUSIONS

The artificial neural network model (ANN) was able to provide an approximate functional representation of

a single hysteresis loop. It provided rough guidelines for selecting the network configuration to develop the

functional approximation for three hysteresis loops at different loading cycles considered simultaneously. One of

the objectives of the study, to develop compact ANN configurations, was achieved by having an ANN configuration

as small as a 6-7-2-1 net. One of the additional benefits of the compactness of a net configuration is that it leads

to a data compression ratio of approximately 22 because in this approach a very small file containing the



weightsandbiasesis savedto re-createtheoriginalfunction.This file capturesall theessentialcharacteristicsof
thematerialdatausedfor training.

TheANN modelwasalsosuccessfulin predictingthestressvalues(atintermediateloadingcycles)which
werenotusedfor trainingthenetwork.Thereis a significantdrift attheendsof thepredictedhysteresisloops.
Thisdrift canbeattributedto thesharpbendsatthecornersof thehysteresisloops.It is anticipatedthatmore
accuratesolutionscanbeobtainedby separatelytrainingtheANNmodelsfor loadingandunloadingandby
combiningthesetwoANN modelsin oneto makeit transparentto theenduser.Thisapproachto ANNtraining
will circumventthetwomathematicalsingularpointslocatedat theendsof thehysteresisloops.

RECOMMENDATIONFORFUTUREWORK

Therearenoestablishedguidelinesfor configuringanappropriatenetworkfor aspecificproblem.Similarly,
it is notpossibleto predictapriori thenumberof iterationsneededfor trainingtheANN model.Thereis aneed
to establishsomeusefulguidelinesconcerningthesequestions.TheANNtrainingis atime-consumingprocess.
Thenewerdevelopmentsin parallelcomputationandANN paradigms,suchasfastbackpropagationalgorithm,
shouldbeexploredto exploitthe inherentparallelismin theANNmethodto reducethetrainingtimein future
work.
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TABLE L--NEURAL NETWORK CONFIGURATIONS

FOR SINGLE HYSTERESIS LOOP (CYCLE 1)

ANN

configuration a

EITOr

Maximum Root

n'lcs_l

square

Number

of

iterations

5 -5-1 0.1596 0.0387 1200

5-6-1 Co) (b) (b)

5-7-1 0.159 0.039 1077

aConfiguration nomenclature: number of input processing

units--total number of processing units in hidden

layer---total number of output units.

bFailcd to converge.

TABLE II.--NEURAL NETWORK CONFIGURATIONS

FOR THREE HYSTERESIS LOOPS

[From fig. 2.]

ANN

configuration a

Ell'or

Maximum Root

lncan

square

Number

of

iterations

6-7- I O. 185 0.045 61

6-9-1 O. 193 0.043 83

6-7-2-1 b 0.154 0.277 12 000

6-15-1 (c) (c) (c)

aConfiguration nomenclature: number of input processing

units---total number of processing units in hidden

layer---total number of output units.

bThe only network model to use two intermediate (hidden)

layers.

eFailed to converge.
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Figure 1 .--Configuration of a typical neural network. Figure 3.DHastelloy X experimental hysteresis loops used
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artificial neural network (ANN) training. Temperature, 11 00 °F;

strain rate, 0.0001 s -1 .
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